Statistical Physics (PH312)
 HW \#2, Fall 2018

Note that you SHOULD show the details of your work.

1. Consider a random walk in one dimension. In a single step the probability of a displacement between x and $x+d x$ is given by

$$
p(x) d x=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)
$$

After N steps, the displacement of the walker is $Y=x_{1}+\cdots+x_{N}$ where x_{i} is the displacement in the i th step. Assume the steps are independent of one another.
(a) What is the probability distribution for the displacement Y ?
(b) What are the average displacement, $\langle Y\rangle$ and the variance, $\left\langle(\Delta Y)^{2}\right\rangle$?
(c) Repeat (a) and (b) for a random walk where the walker is equally likely to take a step with displacement in the interval $d-a \leq x \leq d+a$ for $a<d$.
2. Consider a monoatomic ideal gas consisting of N_{0} molecules in a container of volume V_{0}. Show from the grand canonical ensemble picture that the number N of molecules contained in a region of volume V (anywhere inside the container) is given by the Poisson distribution, $P(N, V)$.
(a) Show at first that $\langle N\rangle=N_{0} f$ and $\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=N_{0} f(1-f)$ where $f=V / V_{0}$.
(b) Show that if both $N_{0} f$ and $N_{0}(1-f)$ are large numbers, $P(N, V)$ assumes a Gaussian distribution.
(c) Further, if $f \ll 1$ and $N \ll N_{0}$, show that

$$
P(N, V)=\frac{\langle N\rangle^{N}}{N!} e^{-\langle N\rangle}
$$

3. (a) Determine the grand partition function for a gas system of magnetic atoms that can have, in addition to the kinetic energy, a magnetic potential energy $\mu_{B} H$ or $-\mu_{B} H$ (with $J=\frac{1}{2}$ and $g=2$), depending on the orientation with respect to an applied magnetic field H.
(b) Derive the expression for the magnetization of the system, M_{z}.
(c) Calculate how much heat will be produced by the system when the magnetic field is reduced from H to zero at constant volume and constant temperature.
4. (a) For an isothermal-isobaric ensemble ($N P T$-ensemble), show that

$$
P(V)=P\left(V^{*}\right) \exp \left(\frac{(V-\langle V\rangle)^{2}}{2 k T(\partial V / \partial p)_{N, T}}\right)
$$

where V^{*} is the most probable volume.
(b) For a grand canonical ensemble, show that

$$
\left\langle(\Delta E)^{2}\right\rangle=k T^{2} C_{V}+\left(\frac{\partial U}{\partial N}\right)_{T, V}^{2}\left\langle(\Delta N)^{2}\right\rangle
$$

where $\left\langle(\Delta E)^{2}\right\rangle \equiv\left\langle E^{2}\right\rangle-\langle E\rangle^{2}$ and $\left\langle(\Delta N)^{2}\right\rangle \equiv\left\langle N^{2}\right\rangle-\langle N\rangle^{2}$.
(c) For a grand canonical ensemble, show that

$$
\langle N E\rangle-\langle N\rangle\langle E\rangle=\left(\frac{\partial U}{\partial N}\right)_{T, V}\left\langle(\Delta N)^{2}\right\rangle
$$

and that

$$
\left\langle(\Delta J)^{2}\right\rangle=k T^{2} C_{V}+\left\{\left(\frac{\partial U}{\partial N}\right)_{T, V}-\mu\right\}^{2}\left\langle(\Delta N)^{2}\right\rangle
$$

where $J=E-N \mu$.

