Nonequilibrium Statistical Mechanics
 HW \#2, Spring 2020

Note that you SHOULD show the details of your work.

1. (a) The characteristic function of multivariate Gaussian distribution has the form

$$
G\left(k_{1}, k_{2}, \ldots, k_{n}\right)=e^{i \sum_{i} k_{i} \mu_{i}-\frac{1}{2} \sum_{i, j} k_{i} k_{j} \sigma_{i j}} .
$$

By explicit calculation, find the probability distribution and show that $\left\langle X_{i} X_{j}\right\rangle_{c}=\sigma_{i j}$. Also show that all higher moments can be expressed in terms of products of first two moments and that all cumulants higher than second order vanish.
(b) Show that if $X(t)$ is a Gaussian process, any linear transformation of it

$$
Y(t)=\int_{a}^{b} c\left(t, t^{\prime}\right) X\left(t^{\prime}\right) d t^{\prime}
$$

is also Gaussian.
2. Consider the Caldeira-Leggett model where a particle of mass m, position x, and conjugate momentum p, under an external potential $U(x)$ is coupled with a bath of N independent harmonic oscillator of mass m_{j}, position x_{j} and momenta p_{j}. Then the Hamiltonian of the system reads as

$$
H=\frac{p^{2}}{2 m}+U(x)+\frac{1}{2} \sum_{j=1}^{N}\left[\frac{p_{j}^{2}}{2 m_{j}}+m_{j} \omega_{j}^{2}\left(x_{j}-\frac{c_{j}}{m_{j} \omega_{j}^{2}} x\right)^{2}\right] .
$$

Show that there is no correlation between different modes and the generalized fluctuation-dissipation theorem can be obtained as

$$
\left\langle f(t) f\left(t^{\prime}\right)\right\rangle_{0}=m k_{B} T \gamma\left(t-t^{\prime}\right)
$$

where the memory kernel is given as $\gamma(t)=(1 / m) \sum_{j} c_{j} /\left(m_{j} \omega_{j}^{2}\right) \cos \omega_{j} t$. Note that $\langle\ldots\rangle_{0}$ denotes ensemble average over initial equilibrium distribution.
3. Eigenfunction expansion method: consider the Langevin equation for the velocity of Brownian particle in the absence of external driving force (Ornstein-Uhlenbeck process):

$$
\frac{d v}{d t}=-\gamma v+\xi(t)
$$

(a) Obtain the Fokker-Planck equation for the probability to find the particle with velocity v at time t, $P(v, t)$ and find the Fokker-Planck operator $\mathcal{L}_{F P}$, explicitly. Show that

$$
\Phi(v)=\frac{\gamma v^{2}}{2 D}, \mathcal{F}(v)=-\gamma v
$$

(b) Using the following operator

$$
\begin{aligned}
b & =\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \xi}+\xi\right) \\
b^{\dagger} & =\frac{1}{\sqrt{2}}\left(-\frac{\partial}{\partial \xi}+\xi\right)
\end{aligned}
$$

where $\xi=v \sqrt{\gamma / 2 D}$, show that the FPE can be transformed into eigenvalue problem with Hermitian operator $\mathcal{H}=\gamma b^{\dagger} b$. Using the eigenfunctions that can be expressed in terms of Hermite polynomials, find the transition probability $P\left(v, t \mid v_{0}, 0\right)$ when the initial probability distribution is $P(v, 0)=\delta\left(v-v_{0}\right)$.

