Nonequilibrium Statistical Mechanics
 HW \#1, Spring 2020

Note that you SHOULD show the details of your work.

1. (a) Consider the phase space probability density $f_{N}((\vec{p}, \vec{q}, t)$ for a classical system of N particles. Using the Hamilton's equation of motion, derive the Liouville equation that describes the time evolution of f_{N}.
(b) Derive the BBGKY hierarchy for the reduced distribution function f_{s} in the presence of external force \mathbf{F}.
2. (a) Consider a collision invariant $\chi(\vec{p}, \vec{q}, t)$ such that $\chi(\vec{p})+\chi\left(\overrightarrow{p_{1}}\right)=\chi\left(\overrightarrow{p^{\prime}}\right)+\chi\left(\overrightarrow{p_{1}^{\prime}}\right)$ during a collision. From the Boltzmann equation, derive the conservation equation for any collision invariant χ (Multiply the Boltzmann equation on both sides by χ and then integrate over \vec{p}).
(b) Letting $\chi=1, p_{\beta} / m-u_{\beta},(\vec{p}-m \vec{u})^{2} / 2 m$, derive the local balance equations for the particle number, the momentum, the kinetic energy.
3. The zeroth-order solution of the Chapman-Enskog expansion is assumed to be a local Maxwell distribution characterized by local density $n(\mathbf{r}, t)$, local mean velocity $\mathbf{u}(\mathbf{r}, t)$, and local temperature $\theta(\mathbf{r}, t) \equiv k_{B} T(\mathbf{r}, t):$

$$
f^{(0)}(\mathbf{r}, \mathbf{p}, t)=n(\mathbf{r}, t)[2 \pi m \theta(\mathbf{r}, t)]^{-3 / 2} \exp \left(-\frac{m(\mathbf{v}-\mathbf{u}(\mathbf{r}, t))^{2}}{2 \theta(\mathbf{r}, t)}\right)
$$

(a) Using $f^{(0)}(\mathbf{r}, \mathbf{p}, t)$, evaluate the pressure tensor and the heat flux defined respectively as

$$
P_{\alpha \beta}^{(0)}=n m\left\langle c_{\alpha} c_{\beta}\right\rangle, \quad \mathbf{h}^{(0)}=\frac{1}{2} n m^{2}\left\langle\mathbf{c c}^{2}\right\rangle
$$

where $\mathbf{c}=\mathbf{v}-\mathbf{u}$.
(b) Inserting these expressions for $P^{(0)}$ and $\mathbf{h}^{(0)}$ into conservation equations for the momentum and the energy, derive the zeroth-order hydrodynamic equations for a perfect fluid.
4. (a) The first-order solution can be obtained by making use of the relaxation time approximation. Show that

$$
f^{(1)} \equiv f^{(0)}(1+g)=f^{(0)}\left\{1-\tau\left[\frac{1}{\theta}(\nabla \theta \cdot \mathbf{c})\left(\frac{m}{2 \theta} \mathbf{c}^{2}-\frac{5}{2}\right)+\frac{1}{\theta} \boldsymbol{\Lambda} \cdot\left(\mathbf{c} \mathbf{c}-\frac{1}{3} \mathbf{c}^{2} I\right)\right]\right\} .
$$

where $\boldsymbol{\Lambda}=m \nabla \mathbf{u}$.
(b) Find the first-order pressure tensor $P_{i j}^{(1)}$ and the first-order heat flux $\mathbf{h}^{(1)}$. Also express the viscosity and the thermal conductivity in terms of local thermodynamic variables. Using the conservation equations, derive the first-order hydrodynamic equations.

