Nonequilibrium Statistical Mechanics
 HW \#2, Spring 2019

Note that you SHOULD show the details of your work.

1. (a) Let X_{j} be an infinite set of independent random variables with identical distribution $P(x)$ and characteristic function $G(k)$. Let r be a random positive integer with distribution p_{r} and probability generating function $f(z)$ [the generating function can be obtained from the characteristic function more conveniently by setting $s=-i k, F(z)=\left\langle z^{X}\right\rangle=\left\langle e^{-s X}\right\rangle$, when X only takes positive values]. Show then that the characteristic function of a random variable $Y=\sum_{j=1}^{r} X_{j}$ is $F(G(k))$.
(b) Consider the Wiener process with the transition probability

$$
P\left(y, t \mid y^{\prime}, t^{\prime}\right)=\frac{1}{\sqrt{2 \pi\left(t-t^{\prime}\right)}} \exp \left[-\frac{\left(y-y^{\prime}\right)^{2}}{2\left(t-t^{\prime}\right)}\right] .
$$

Prove for the Wiener process, when $0<t_{1}<t_{2}$,

$$
\begin{array}{cl}
\left\langle y_{2}\right\rangle_{y_{1}}=y_{1}, & \left\langle\left\langle y_{2}^{2}\right\rangle\right\rangle_{y_{1}}=t_{2}-t_{1} \\
\left\langle y_{1}\right\rangle_{y_{2}}=\frac{t_{1}}{t_{2}} y_{2}, & \left\langle\left\langle y_{1}^{2}\right\rangle\right\rangle_{y_{2}}=\frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right) .
\end{array}
$$

where y_{1}, y_{2} stand for $Y\left(t_{1}\right), Y\left(t_{2}\right)$. Here $\langle\ldots\rangle_{z}$ indicates a conditional average with constant z and $\langle\langle\ldots\rangle\rangle$ denotes a cumulant.
Also show that for the Wiener process,

$$
\begin{aligned}
\left\langle y^{n}(t)\right\rangle & =\left\{\begin{array}{l}
(n-1)!!t^{n / 2}, \text { even } n \\
0, \text { odd } n
\end{array}\right. \\
\left\langle(\Delta y)^{n}\right\rangle & =\left\{\begin{array}{l}
(n-1)!!(\Delta t)^{n / 2}, \text { even } n \\
0, \text { odd } n
\end{array}\right. \\
\left\langle Y\left(t_{1}\right) Y\left(t_{2}\right)\right\rangle & =\min \left(t_{1}, t_{2}\right)
\end{aligned}
$$

(c) Show that if $X(t)$ is a Gaussian random variables, then

$$
\left\langle x^{*}(t) x(t) x^{*}(0) x(0)\right\rangle=\left|\left\langle x^{*}(0) x(0)\right\rangle\right|^{2}+\left|\left\langle x^{*}(t) x(0)\right\rangle\right|^{2}
$$

(d) Take a sequence of variables $X_{j}(j=1,2, \ldots, r)$ with distributions $P_{j}(x)=f(x-j)$ with fixed f. Show that the central limit property does not apply but that the variable Z defined by

$$
\sum_{j=1}^{r} X_{j}=\frac{1}{2} r(r+1)+Z
$$

does tend to a Gaussian. How can this be seen a priori?
2. Kramers-Moyal backward expansion: from the following Chapman-Kolmogorov equation for the transition probability

$$
P\left(q, t \mid q^{\prime}, t^{\prime}\right)=\int d q^{\prime \prime} P\left(q, t \mid q^{\prime \prime}, t^{\prime}+\tau\right) P\left(q^{\prime \prime}, t^{\prime}+\tau \mid q^{\prime}, t^{\prime}\right)
$$

where $t \geq t^{\prime}+\tau \geq t^{\prime}$. Derive the Kramers-Moyal backward expansion where we differentiate P with respect to q^{\prime} and t^{\prime}, i.e., with respect to the value of the stochastic variable at earlier time $t^{\prime}<t$:

$$
\frac{\partial}{\partial t} P\left(q, t \mid q^{\prime}, t^{\prime}\right)=-\mathcal{L}_{K M}^{\dagger}\left(q^{\prime}, t^{\prime}\right) P\left(q, t \mid q^{\prime}, t^{\prime}\right)
$$

with

$$
\mathcal{L}_{K M}^{\dagger}\left(q^{\prime}, t^{\prime}\right)=\sum_{n=1}^{\infty} \mathcal{D}^{(n)}\left(q^{\prime}, t^{\prime}\right)\left(\frac{\partial}{\partial q^{\prime}}\right)^{n}
$$

3. Stochastic calculus: for general α, evaluate the averages of the following stochastic integrals,

$$
\int_{0}^{t} d W(s) W(s) s, \quad \int_{0}^{t} d W(s) W^{3}(s) e^{-\lambda s}, \quad \int_{0}^{t} d W(s) W^{2 k+1}(s)
$$

4. Suppose that we have a random variable satisfying the following stochastic differential equation,

$$
d x=-\beta x d t+\sqrt{2 \beta\left(a^{2}-x^{2}\right)} d W(t)
$$

where $x \in[-a, a]$.
(a) Assuming the Ito interpretation $(\alpha=0)$, find the corresponding Fokker-Planck equation.
(b) Find the normalized steady state probability $P_{s}(x)$.
(c) Consider the general (forward) Fokker-Planck equation written as

$$
\frac{\partial}{\partial t} P(x, t)=\mathcal{L}_{F P} P(x, t)
$$

with the Fokker-Planck operator $\mathcal{L}_{F P}$. What is the explicit expression of $\mathcal{L}_{F P}$ with the positiondependent drift and diffusion coefficient, $A(x)$ and $B(x)$? Defining $P(x, t)=P_{s}(x) Q(x, t)$, show that Q satisfies

$$
\frac{\partial}{\partial t} Q(x, t)=\mathcal{L}_{F P}^{\dagger} Q(x, t)
$$

where $\mathcal{L}_{F P}^{\dagger}$ is the backward Fokker-Planck operator. Now consider the eigenfunctions $P_{n}(x)$ and $Q_{n}(x)$ which satisfy

$$
\mathcal{L}_{F P} P_{n}(x)=-\lambda_{n} P_{n}(x), \quad \mathcal{L}_{F P}^{\dagger} Q_{n}(x)=-\lambda_{n} Q_{n}(x)
$$

For $\mathcal{L}_{F P}$ given as (a), solve for $P_{n}(x)$ and $Q_{n}(x)$. Hint: use a Chebyshev polynomials.
(d) Obtain an expression for $\left\langle x^{3}(t) x^{3}(0)\right\rangle$ when $x(0)=x_{0}$ is distributed according to $P_{s}\left(x_{0}\right)$.

