Statistical Physics (PH312)
 HW \#4, Fall 2019

Note that you SHOULD show the details of your work.

1. Show that, if the occupation number n_{ϵ} of an energy level ϵ is restricted to the values $0,1, \cdots, l$, then the mean occupation number of that level is given by

$$
\left\langle n_{\epsilon}\right\rangle=\frac{1}{z^{-1} e^{\beta \epsilon}-1}-\frac{l+1}{\left(z^{-1} e^{\beta \epsilon}\right)^{l+1}-1}
$$

Also, Check that while $l=1$ leads to $\left\langle n_{\epsilon}\right\rangle_{F . D}, l \rightarrow \infty$ leads to $\left\langle n_{\epsilon}\right\rangle_{B . E}$.
2. Consider a system with total particle number N. Each particles can occupy a state from set of states $\{\varepsilon\}$. Expression of the entropy depends on type of particles as following

$$
\begin{gathered}
S=k_{B} \sum_{\varepsilon}\left[<n_{\varepsilon}>\ln <n_{\varepsilon}+1>-<n_{\varepsilon}>\ln <n_{\varepsilon}>\right] \quad(\text { for bosonic particles) } \\
S=k_{B} \sum_{\varepsilon}\left[-<1-n_{\varepsilon}>\ln <1-n_{\varepsilon}>-<n_{\varepsilon}>\ln <n_{\varepsilon}>\right] \quad \text { (for fermionic particles) }
\end{gathered}
$$

Dervie those two formulas from general formula $S=-k_{B} \sum_{\varepsilon}\left[\sum_{n} p_{\varepsilon}(n) \ln p_{\varepsilon}(n)\right]$.
3. Consider an one-dimensional quantum mechanical harmonic oscillator which is in equilibrium with a heat reservoir at temperature T. The Hamiltonian of the oscillator is given by

$$
\begin{equation*}
\mathcal{H}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \tag{1}
\end{equation*}
$$

Then energy eigenvalues E_{n} and corresponding wave functions Ψ_{n} are determined as

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad \Psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{H_{n}(s)}{\sqrt{2^{n} n!}} \exp \left[-\frac{1}{2} s^{2}\right] \tag{2}
\end{equation*}
$$

where H_{n} is the nth Hermite polynomial, and $s=(m \omega / \hbar)^{1 / 2} x$.
(a) Find a coordinate representation of density operator $\hat{\rho}$ of the system in terms of H_{n} 's.
(b) To develop the result of (a), we can use the integral representation of H_{n}

$$
\begin{equation*}
H_{n}(x)=\frac{e^{x^{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty}(-2 i u)^{n} e^{-u^{2}+2 i x u} d u \tag{3}
\end{equation*}
$$

Substituting H_{n} in the result of (a) to above integral representation, show that the diagonal elements of $\hat{\rho}$ in the coordinate representation is given by

$$
\begin{equation*}
\rho(x) \equiv\langle x| \hat{\rho}|x\rangle=\left[\frac{m \omega}{\pi \hbar} \tanh \left(\frac{1}{2} \beta \hbar \omega\right)\right]^{1 / 2} \exp \left[-\frac{m \omega}{\hbar} \tanh \left(\frac{1}{2} \beta \hbar \omega\right) x^{2}\right] \tag{4}
\end{equation*}
$$

(c) Calculate the ensemble average $\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$ by using the density operator. Do those agree with the result of the classical case?

