Note that you SHOULD show the details of your work.

1. Consider an isolated system of volume V including $N(\gg 1)$ particles. The Hamiltonian of the system is given by $\mathcal{H}(p,q)$ where p,q are vectors of the canonical momenta p_1, p_2, \dots, p_{3N} and the canonical coordinates q_1, q_2, \dots, q_{3N} . Now, let's consider a microcanonical ensemble of the system which has an energy between E and $E + \Delta(assume \Delta \ll E)$. We have three different ways to define an entropy for the ensemble

$$S_1 = k_B \log \Gamma(E) \tag{1}$$

$$S_2 = k_B \log \Sigma(E) \tag{2}$$

$$S_3 = k_B \log g(E) \tag{3}$$

where k_B is the Boltzmann's constant, $\Gamma(E)$ is the shell volume in the phase space occupied by the microcanonical ensemble

$$\Gamma(E) = \int_{E < \mathcal{H}(p,q) < E + \Delta} d^{3N} p \ d^{3N} q, \tag{4}$$

 $\Sigma(E)$ is the volume in phase space enclosed by the energy surface of energy E

$$\Sigma(E) = \int_{\mathcal{H}(p,q) < E} d^{3N} p \ d^{3N} q, \tag{5}$$

and g(E) is the density of states defined as

$$g(E) = \frac{\partial \Sigma(E)}{\partial E}.$$
(6)

(a) Show S_1 has the extensive property. More precisely, if a system is composed of two subsystems whose entropies are, respectively, S_a and S_b , the entropy of the total system is $S_a + S_b$, when the subsystems are sufficiently large.

(b) Show those three definitions are equivalent to one another upto negligible(order of $\log N$) difference.

2. Consider an isolated quantum mechanical system consisting of *N* non-interacting particles in a cubic box of length *L*. The state of the system is described by the 3*N* quantum numbers n_i ($i = 1, \dots, 3N$) of the occupied states, and the total energy is given by

$$E = \frac{h^2}{8mL^2} \sum_{i=1}^{3N} n_i^2.$$

The number of microstates for given macroscopic quantities (E, V, N) is then given by the number of integer grid points satisfying the above relation. For a large $N(N \gg 1)$, the grid points are so dense that the average number of grid points up to the energy E can be assumed to be proportional to the volume of the positive "octant" $(n_i > 0)$, up to E, spanned by 3N dimensional continuous coordiantes n_i . Note that the volume of the unit cube in (n_x, n_y, n_z) -space equals 1.

- (a) Find the expression for the number of microstates $\Omega(E, V, N)$ and the entropy S(E, V, N).
- (b) Find the pressure P exerted by the particles on the box in terms of E, V, N.
- 3. Consider a two-dimensional classical ideal gas system in microcanonical ensemble where N particles are confined in area A with total energy E.
 - (a) Derive the entropy S in terms of the area A, total energy E and the particle number N.
 - (b) Derive the thermodynamic quantities, temperature T and pressure P.